新葡萄88805官网
网站首页

新葡萄88805官网“博约学术论坛”系列报告(第125期)

来源: 作者: 发布时间:2017-10-18

邀请人:

报告人:

时间: 2017-10-18

地点:

主讲人简介:

  题目:A physicist's view of numerical methods:Poissonian mechanics and the rise of modern dynamical algorithms

  报告人:Prof. Siu A. Chin 教授、美国物理学会Fellow(Texas A&M University)

  时  间:2017年10月19日(周四)下午2:30-3:30

  地  点:新葡萄88805官网 中心教学楼610

  Abstract: To most physicists, numerical methods are just tools to be use when needed, and are mostly tedious finite-difference approximations derived from Taylor's expansion. This is entirely not the case, in fact even the simplest stable algorithms for solving classical dynamics, are all canonical transformations and are rooted in the deepest part of classical mechanics, that of the Poissonian formulation of mechanics. This talk will explain how this single perspective give rises to modern symplectic and unitary methods for solving both classical and quantum mechanical problems.

  简历:

  (i) Professional Preparation:

  M.I.T. | Physics B.S. (Phi Beta Kappa) - 1971

  Stanford University | Physics Ph.D - 1975

  Postdoctoral Fellow in Physics, University of Illinois at Urbana-Champaign, 1975-1978

  Research Associate in Physics, M.I.T., 1978-1980

  (ii) Appointments:

  Professor of Physics, Texas A&M University, 1993 - present

  Associate Professor of Physics, Texas A&M University, 1990-1992

  Visiting Associate Professor of Physics, Texas A&M University, 1984-1989

  Adjunct Assistant Professor of Physics, UCLA, 1980-1984

  (iii) Publications:

  Ten recent publications

  1. S. A. Chin, Omar A. Ashour, Stanko N. Nikolic and Milivoj R. Belic "Peak-height formula for higher-order breathers of the nonlinear Schrdinger equation on nonuniform backgrounds,",Phys. Rev. E 95, 012211 (2017), DOI: 10.1103/PhysRevE.95.012211

  2. S. A. Chin, Omar A. Ashour, Stanko N. Nikolic and Milivoj R. Belic "Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrdinger equation and their systematicgeneration,", Phys. Lett. A 380, 3625-3629 (2016), DOI: 10.1016/j.physleta.2016.08.038

  3. S. A. Chin, Omar A. Ashour and Milivoj R. Belic "Anatomy of the Akhmediev breather:Cascading instability, rst formation time, and Fermi-Pasta-Ulam recurrence", Phys. Rev. E92, 063202 (2015); DOI: 10.1103/PhysRevE.92.063202

  4. S. A. Chin, "A unied derivation ofnite-dierence schemes from solution matching", Numer.Methods Part. Di. Eq. 2015; doi: 10.1002/num.21993

  5. S. A. Chin, "High-order Path Integral Monte Carlo methods for solving quantum dot prob-lems", Phys. Rev. E 91, 031301(R) (2015); doi: 10.1103/PhysRevE.91.031301

  6. S. A. Chin, "A truly elementary proof of Bertrand's theorem", Am. J. Phys. 83, 320 (2015);doi: 10.1119/1.4901974

  7. S. A. Chin, "Understanding Saul'yev-Tpye Unconditionally Stable Schemes from Exponential Splitting", Numer. Methods Part. Di. Eq. 2014; doi: 10.1002/num.218851

  8. S. A. Chin and Jurgen Geiser, "Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations", IMA Journal of Numerical Analysis 2011; doi:10.1093/imanum/drq022

  9. S. A. Chin, "Multi-product splitting and Runge-Kutta-Nystrom integrators", Cele. Mech.Dyn. Astron. 106, 391-406 (2010). R. E. Zillich, J. M. Mayrhofer and S. A. Chin, "Extrapo-lated high-order propagators for path integral Monte Carlo simulations", J. Chem. Phys. 132,044103 (2010).

  10. S. A. Chin, S. Janecek and E. Krotscheck /Any order imaginary time propagation method forsolving the Schroedinger equation", Chem. Phys. Lett. 470, 342 (2009)

  联系方式:新葡萄88805官网办公室 (68913163)

  邀请人:苏文勇 副教授

  网    址:http:/